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Theory and Experiment of a Rectangular
Slot on a Sphere

Kwok Wa Leung,Member, IEEE

Abstract—A rectangular slot on a spherical cavity is studied
theoretically and experimentally. The Green’s functions interior
and exterior to the cavity are found rigorously using the mode-
matching method. An integral equation of magnetic current in
the slot is formulated, which is solved using the moment method.
The singularity problem in admittance calculations is tackled and
the result is very computationally efficient. Both the slot and
cavity resonances are examined. Moreover, the natural and forced
resonances of the cavity are addressed. The effects of slot length,
cavity size, excitation location, and cavity dielectric constant on
the input impedance are discussed. Very good agreement between
theory and experiment is obtained.

Index Terms—Modal analysis, moment method, resonance,
spherical cavity.

I. INTRODUCTION

A N AZIMUTHAL or zonal slot cut on a conducting
sphere has been studied extensively [1]–[6]. However,

only little attention was received for the rectangular slot. Such
a structure is inherently an interesting problem and can be
used as a gain standard [2]. Furthermore, the rectangular
slot offers a higher flexibility than the azimuthal slot in
designing a spherical array, which can be used to avoid the
scanning problem of a planar array at low elevation. Thus
far, studies of the rectangular slot on a sphere have only
concentrated on the radiation pattern [2], scattering [7], [8],
and mutual coupling [9]. Little or no information of the input
impedance was found in the literature. In this paper, the input
impedance of a rectangular slot cut on a conducting spherical
cavity is studied theoretically and experimentally. Although
the slot is not cavity-backed, the extension of the present
theory to include the slot backing for practical applications
is straightforward. Like the planar case [10], the slot can be
excited by a microstrip feedline inside the sphere to admit a
monolithic-microwave integrated-circuit (MMIC) integration,
and the present theory can be easily extended to analyze
the modified or other related structures. Moreover, the result
can be useful as a means of testing approximate theoretical
methods.

In this paper, the mode-matching method [11] is used to
derive the Green’s functions of the structure rigorously. An
integral equation of the unknown magnetic current in the slot
is formulated by matching the boundary conditions [12], [13],
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and the unknown current is solved using the moment method.
To enhance the numerical computation, the modal Green’s
functions are presented as a sum of particular and homogenous
solutions [11]. This allows a special treatment for the slowly
convergent particular solutions. Although the homogeneous
solutions themselves do not converge on the spherical bound-
ary, it was found that their impedance integrals converge
very quickly by using only a small number of modal terms.
For the particular solutions, the technique of [14] is used to
obtain a new result for a curvilinear slot. The integrals are
expressed in forms analogous to the Richmond form so that
they can be calculated in a straightforward manner. These
make calculations of the input impedance very easy and fast.

Two kinds of resonance are found for the structure and
are examined in this paper: the slot and cavity resonance. In
particular, the natural and forced resonances of the cavity are
addressed and discussed. The effects of slot length, cavity size,
excitation location, and cavity dielectric constant on the input
impedance are discussed. Measurements are done to check the
calculations, and very good agreement between theory and
experiment is obtained.

II. FORMULATION

The geometry of the structure is shown in Fig. 1, where a
slot of length and of width is cut from a conducting
spherical cavity filled with material of dielectric constant
and of wavenumber . The center of the slot lies
on the -axis, and the slot subtends an angle from to

. In the following formulation, the fields are assumed to
vary harmonically as , which is suppressed. Moreover,

and refer to the field and source points,
respectively. The superscripts or subscriptsand are used
to denote the interior and exterior regions of the cavity,
respectively. It is assumed that the cavity is surrounded by
air and . From the equivalence principle, the slot
can be shorted and the exterior and interior fields are now
generated by the equivalent magnetic currentsand ,
respectively. The equivalent configuration is shown in Fig. 2.
For the ease of computation, the Green’s functions are divided
into their particular and homogeneous parts. The former repre-
sents radiation of a source in an unbounded medium, while the
latter accounts for the boundary discontinuity. Following the
procedure of [11], the interior and exterior Green’s functions
of are obtained. On the slot surface, we have ,
and the Green’s functions are given by

(1)
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(a)

(b)

Fig. 1. Geometry of a slot on a sphere. (a) Perspective view. (b) Top view.

where

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

and denote the wave impedances. Observe that the Green’s

functions are reciprocal in and , which is to be

(a)

(b)

Fig. 2. The use of equivalence principle. (a) Original problem. (b) Equivalent
problem.

expected. In (2)–(4), is the Legendre polynomial of
degree , and and are the spherical Bessel
function of the first kind and spherical Hankel function of the
second kind, respectively. Both of them are of orderand
of Schelkunoff type [15, p. 268]. All other symbols have the
usual meanings. It should be mentioned that as the particular
solutions are solved under the free-space condition, (2) is
common to both the interior and exterior regions, except that
each region has its own constitutive parameters. In (3) and
(4), , , , and are reflection coefficients at
the cavity boundary. It is interesting to note that when the
denominators of and are set to zero, we obtain the
characteristic equations for cavity resonances of TE and TM
modes, respectively. The eigenvalues of the equations have
been well studied elsewhere [15, pp. 269–271]. On the other
hand, putting the denominators of and to zero gives
the characteristic equations for complex scattering resonances
of TE and TM modes, respectively. In deriving (2)–(4), the
double summations in the modal expansion have been reduced
to the single summations by using the addition theorem for
Legendre polynomials

(10)

where for and for .

Let be the excitation (electric) current density,
then we have

(11)
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from which the following integral equation for the magnetic
current density is obtained:

(12)

where is the slot surface. The delta gap source is
used to model the excitation current and, therefore,

, where and are the current amplitude
and coordinate at the feed point, respectively. Let

be the magnetic current, then (12) becomes

(13)

Using the moment method, the magnetic current is expanded
in terms of unknown voltage coefficients ’s as follows:

(14)

where ’s are piecewise sinusoidal (PWS) basis functions
given by

(15)

in which

(16)

(17)

and is the effective wavenumber of the
slot. Insertion of (14) into (13) yields

(18)

where has been set to unity for convenience. By using
the Galerkin’s procedure, the following matrix equation is
obtained:

(19)

where

(20)

After ’s are found, the input impedance is easily calculated
from . In Section III, we will discuss a
technique to calculate efficiently.

III. EFFICIENT COMPUTATION OF

To calculate the admittance elements efficiently, we
first divide into their particular and homogeneous parts
as follows:

(21)

where

(22)

and

(23)

Direct evaluation of the homogeneous parts is possible
since the integrals of converge in a small number of
modal terms, and the truncated are slowly varying
functions. To solve the problems arising from , we use the
physical argument technique [11], [14] to replace the modal
form of by a simple form that requires no summation.
We then use the concept of equivalent radius [14] so that
the magnetic currents now flow on a (curvilinear) cylindrical
surface instead of the curvilinear slot. It can then be shown
that the admittances are given by

(24)

where

(25)

and

(26)

are the equivalent radius and approximate distance between
the field and source points on the cylindrical surface,
respectively. (The exact and more accurate expressions of
the distance are given in the Appendix). In (24), the term

represents the Green’s function
of due to a -directed electric point current in free space,
whereas the factor of is used to transform the electric
quantities to magnetic ones. Observe from (26) that
and, thus, the singularity has been avoided. After simplification
and rearrangement, we obtain (27), shown at the bottom of the
following page, which is analogous to the Richmond form of a
cylindrical dipole [16]. By using (27), can be calculated
in a straightforward manner. Of course, care has to be taken
in performing the numerical integration around , where
the integrand has a very sharp (but finite) amplitude due to
the factor of .
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(a)

(b)

Fig. 3. Measured and calculated input impedance of the structure for differ-
ent slot lengths:a = 6:25 cm,W = 2:4 mm, "r = 1; �0 = 0. (a)L = 8:60

cm. (b) L = 12:46 cm.

IV. M EASURED AND CALCULATED RESULTS

To verify the theory, measurements were done using the
image technique [17], [18]. Several hemispherical cavities of
radius cm were fabricated, whose edges were butted
up against a 50 50 cm copper image plane. Conducting
adhesive tapes were used at the cavity edge to increase the
conduction between the cavity and image plane. A coaxial
probe of radius 0.62 mm was used to excite the half-slot
of width . The measurements were carried out using an
HP8510C network analyzer, and the reference plane was set
at the coaxial aperture using the port extension. The measured
input impedances were multiplied by two to obtain the input
impedance of the original configuration (a spherical cavity
with a whole slot).

The input impedance of the structure for , ,
and cm were measured and calculated, but only the
results of and cm are shown in Fig. 3 for

TABLE I
MEASURED, CALCULATED, AND PREDICTED RESONANT FREQUENCIES

(ZERO REACTANCE) OF THE SLOT FOR L = 8:6; 10:43, AND

12:46 cm. OTHER PARAMETERS ARE THE SAME IN FIG. 3

brevity. The convergence check of the moment method was
done, and was used in the following calculations. To
obtain the converged impedance integrals of the homogeneous
solutions, it was found that using about ten modal terms is
sufficient for the first cavity resonance ( mode) and
30 for the third resonance ( mode). In this paper, 30
modal terms were used for cm and fewer terms for a
smaller cavity. With reference to Fig. 3(a) and (b), very good
agreement between theory and experiment is obtained. Several
resonances are found which are labeled in the figures. Note
that the degenerate , , , and modes
cannot be excited since the slot is bisected by the– plane.
The first resonance is due to the slot, whose resonant frequency
decreases with increasing slot length, as expected. Note that
the slot length affects the impedance of the slot very slightly,
as found in the planar case. Table I shows the measured and
calculated resonant frequencies (zero reactance) of the slot for

, , and cm. With reference to Table I, the
maximum error is 2.23%. For ease of comparison, the resonant
frequencies predicted using the simple formula
are also shown in the table. As can be observed from Table I,
the calculated value is always lower than the predicted value.
Part of the reason is that the end effect of the slot, which
effectively increases the slot length and thus decreases the
resonant frequency, is not included in the simple formula.

For the cavity resonance, note that the fundamental mode is
the mode, whereas it is the mode for a dielectric
cavity of [11], [14]. It should be mentioned that the
cavity resonances at zero reactance are caused by the slot, i.e.,
they are forced resonances. For the natural resonances, they
occur at the points where the input resistance is minimum
[18], [19]. This is because, at the natural resonances, the
fields are distributed in a way that strongly resembles the
closed cavity case. This forces the (tangential)-field in the
slot to vanish, causing the input resistance to be so small.
Table II compares the calculated resonant frequencies of the
natural resonances (minimum resistance) with those predicted
using the eigenvalues for cm. From Table II, it is
seen that the predicted, calculated, and measured values are
in excellent agreement. The measured and calculated forced
resonant frequencies for cm are given in Table III,
where excellent agreement between theory and experiment is
found (error 0.5%).

(27)
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TABLE II
MEASURED, CALCULATED, AND PREDICTED NATURAL RESONANT FREQUENCIES

OF THE CAVITY FOR L = 8:6 cm. OTHER PARAMETERS ARE THE SAME IN FIG. 3

TABLE III
MEASURED AND CALCULATED FORCED RESONANT FREQUENCIES OF THE

CAVITY FOR L = 8:6 cm. OTHER PARAMETERS ARE THE SAME IN FIG. 3

Refer back to Fig. 3. As increases, the resonant fre-
quency of the second-harmonic slot resonance decreases and
the influence of the harmonic upon the cavity -mode
increases. (The first harmonic of the slot requires the magnetic
current or the slot voltage to be zero at the center of the
slot. Therefore, the first harmonic cannot be excited when the
slot is center fed.) This can be seen from the fact that as
was increased from 8.6 to 10.43 cm, the minimum -
mode resistance increased from a rather small value of 3.1 to
21.5 . The interference between the second harmonic and
the mode is obvious at cm [see Fig. 3(b)].
Using , the resonant frequency of the second
harmonic for cm is about 3.61 GHz. Since the
actual resonant frequency is somewhat lower than this value
due to the end effect, it is evident that the second-harmonic
and -mode resonances are very close to each other. With
reference to Fig. 3(b), as expected, the second harmonic and
the cavity mode interfere with each other very strongly.

The resonant frequency of the slot has been lower than that
of the mode. It is interesting to see what happens when
the slot resonance has a higher frequency. For this purpose,
an experiment using cm was carried out. The
estimated resonant frequency of the slot is about 3.3 GHz,
which is higher than that of the mode (2.1 GHz).
The measured and calculated results are shown in Fig. 4,
where good agreement between theory and experiment is
observed. With reference to Fig. 4, the -mode resonance
now has a very sharp impedance, exhibiting a very high-
characteristic. (The peak is too sharp to measure accurately.)
At this resonance, the cavity has a very poor radiation loss and
acts rather like a closed cavity. This shows that the influence
of the slot upon the mode is small. Instead, as shown in
Fig. 4, the slot now interacts strongly with the cavity
mode.

Fig. 5 shows the calculated input resistance for ,
, and cm, with cm and mm. For

clarity, only the mode is shown for cavity resonance.
With reference to the figure, the resonant frequency of the
cavity is now significantly affected; as expected, the smaller

Fig. 4. Measured and calculated input impedance of the structure:
L = 4:45 cm,W = 2:4 mm, a = 6:25 cm, "r = 1, �0 = 0.

Fig. 5. Calculated input resistance of the structure fora = 4:0, 5:0, and
6:25 cm: L = 10:43 cm, W = 2:8 mm, "r = 1, �0 = 0.

Fig. 6. Measured and calculated input impedance of the structure for an
excitation offset�0 = 15:9�:L = 10:43 cm, W = 2:8 mm, a = 6:25 cm,
"r = 1.

the cavity, the higher the resonant frequency results. Observe
that the resonant frequency of the slot is only slightly altered
by the cavity size. From the figure, it is seen that using a
smaller cavity leads to a smaller slot impedance. The results
are similar to those of the cavity-backed slot antenna [18].

Fig. 6 shows the measured and calculated input impedances
for an excitation offset with cm
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and mm. Good agreement between theory and
experiment is obtained. With reference to the figure, the first
harmonic of the slot, which has not been found previously for

, is now excited. The calculated resonant frequency of
the first harmonic (zero reactance) is 2.76 GHz, which agrees
excellently with the measured value. On the other hand, the
predicted resonant frequency using is 2.88 GHz.
In view of the end effect of the slot and the coupling of
other resonances, the results are very consistent. The input
impedance for was also measured and calculated,
and good agreement between theory and experiment was
obtained. From the results of , , and , it
was found that the input impedance at the fundamental slot
resonance decreased as increased. This is because, at the
fundamental resonance, the slot voltage (magnetic current) is
maximum at the center and decreases monotonically along the
slot. A similar trend is also observed for the cavity
mode. It was observed that at , the -mode
reactance was shifted upward, significantly due to the influence
of the strongly excited harmonic.

The input impedances for and with cm,
mm, cm, and were calculated. It

was found that, as expected, the higher the dielectric constant,
the lower the resonant frequency and the higher the-factor.
Moreover, the input impedance increased with thefactor,
showing the characteristic of a parallel-type resonance. The
calculated resonant frequencies (zero reactance) of the slot
were 0.94 and 0.70 GHz for and , respectively, which
agreed reasonably well with the predicted values of 1.0 and
0.77 GHz using , where
is the effective dielectric constant of the slot. For the cavity
resonances, their resonant frequencies (minimum resistance)
were predicted accurately using their eigenvalues.

V. CONCLUSION

A slot on a spherical cavity has been studied. The rigorous
Green’s functions interior and exterior to the cavity have
been derived and the overall solution is very computationally
efficient. The moment method has been used to find the
unknown magnetic current in the slot. The techniques used
in the planar slot have been modified and applied to the
present curvilinear slot so that the problem of singularity in
admittance calculations has been avoided. From the magnetic
current, the input impedance of the structure has been found.
Measurements were done to verify the theory, and very good
agreement between theory and experiment has been obtained.

The slot and cavity resonances of the structure have been
found and discussed. For the cavity resonance, both the natural
and forced resonances have been addressed. The effects of the
slot length, cavity size, excitation offset, and cavity dielectric
constant on the input impedance have been studied. It has been
found that when the slot length is small (or, equivalently, the
cavity is large), a strong coupling between the slot and cavity
resonances occurs. For the excitation offset, it can be used to
change the impedance level. With the offset, the first harmonic
of the slot has been also excited. To decrease the operating
frequency, the cavity can be filled with dielectric material, at
the expense of smaller bandwidth and reduced radiation.

(a)

(b)

Fig. 7. The approximate distanceR of (26) and the angle	 in the Appendix.

The theory and techniques presented in this paper are useful
for other related problems. For example, based on the theory,
the structure with a backing cavity for the slot can be easily
analyzed.

APPENDIX

The exact expression of the distance between the field and
source points is, in spherical coordinates, given by

(A1)

where has been defined in (5). Unfortunately, this expres-
sion is not suitable for mathematical simplification. Instead, an
approximate expression was used, which is given by [20]

(A2)

where is an angle illustrated in Fig. 7. Note that
when and , which causes a singularity in
admittance calculations. To avoid the singularity, we have used
the following approximation in deriving (24):

(A3)

where has been defined in (26). Note that (A3) is analogous
to the reduced kernel for a cylindrical dipole antenna [21].
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